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Abstract
In this paper, we present an elementary theory on the existence and robustness of
horseshoes under perturbations in terms of stability of crossing. The framework
is developed in the setting of 2D Euclidean space but can be generalized to
metric spaces. As an application, we give a rigorous verification of the existence
of a horseshoe in the Ikeda map.

PACS numbers: 05.45.−a, 02.40.Pc

1. Introduction

It is well accepted that the existence of a ‘horseshoe’ embedded in a dynamical system should
be the most compelling signature of chaos, both in dissipative and conservative systems, and
the horseshoe theory (Smale horseshoe or current topological horseshoe theory) with symbolic
dynamics provides a powerful tool in rigorous studies of complicated dynamics such as chaos
in dynamical systems. Since the first result on Smale horseshoes, remarkable progress has been
made in seeking sufficient conditions for the existence of horseshoes in dynamical systems,
both in discrete time and continuous time (by virtue of Poincaré map) cases [1–15].

However, there still remains much work to do in finding more appropriate approaches to
the existence of horseshoes in dynamical systems, especially in finding approaches suitable
for computer study of chaotic dynamical systems.

In this paper, we present an elementary theory on the existence of horseshoes and their
robustness of under perturbations in terms of stability of crossing. We do not use the
well-known Conley index theory to study horseshoes, because it requires much topological
background, and there are excellent papers on this topic [4–8]. We hope to present a theory
that is rigorous but nevertheless understandable to readers with less topological knowledge.
Without loss of generality, we only consider the situation where the metric space is R2 for
the reader’s convenience, because the theory developed in the setting of the planar case can
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be restated in the context of n-dimensional space Rn or metric space, and proved in the same
manner.

2. Preliminaries

First we recall some aspects of symbolic dynamics.
Let Sm = {0, 1, . . . , m − 1} be the set of non-negative successive integers from 0 to

m − 1. Let �m be the collection of all bi-infinite sequences or one-sided sequences with their
elements from Sm, i.e., every element s of �m is of the following form,

s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . .}, si ∈ Sm,

or

s = {s0, s1, . . . , sn, . . .}, si ∈ Sm.

Now consider another sequence s̄ ∈ �m

s̄ = {. . . , s̄−n, . . . , s̄−1, s̄0, s̄1, . . . , s̄n, . . .}, s̄i ∈ Sm,

or

s̄ = {s̄0, s̄1, . . . , s̄n, . . .}, s̄i ∈ Sm.

The distance between s and s̄ is defined as

d(s, s̄) =
∞∑

−∞

1

2|i|
|si − s̄i |

1 + |si − s̄i | ,

in the case of bi-infinite sequences, or

d(s, s̄) =
∞∑

i=0

1

2i

|si − s̄i |
1 + |si − s̄i | , (2.1)

in the case of one-sided sequences.
With the distance defined as (2.1), �m is a metric space, and the following facts are well

known [9].

Proposition 2.1. The space �m is

(i) compact
(ii) totally disconnected

(iii) perfect.

A set having the three properties in the above proposition is often defined as a Cantor set,
such a Cantor set frequently appears in characterization of complex structure of invariant set
in a chaotic dynamical system.

Furthermore, now define a m-shift map σ : �m → �m as follows:

σ(s)i = si+1.

Then there are the following results.

Proposition 2.2. (a) σ(�m) = �m and σ is continuous. (b) The shift map σ as a dynamical
system defined on �m has the following properties:

(i) σ has a countable infinity of periodic orbits consisting of orbits of all periods;
(ii) σ has an uncountable infinity of nonperiodic orbits and

(iii) σ has a dense orbit.
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For a proof of the above statements, we refer the reader to [9]. A consequence of statement
(b) is that the dynamics generated by the shift map σ is sensitive to initial conditions, and
therefore is chaotic.

Next we recall the semi-conjugacy in terms of a continuous map and the shift map σ,

which is conventionally defined as follows.

Definition 2.1. Let X be a compact metric space, and f : X → X a continuous map. If there
exists a continuous and onto (surjective) map

h : X → �m

such that h ◦ f = σ ◦ h, then f is said to be semi-conjugate to σ.

For the reader’s convenience, we recall the concept of topological entropy as follows.

Definition 2.2. Let X be a compact metric space, and f : X → X a continuous map. A finite
set E ⊂ X is called (n, ε)-separated if for every two different points x, y ∈ E, there exists
0 � j < n such that the distance between f j (x) and f j (y) is greater than ε. Now, let the
number s(n, ε) denote the cardinality of a maximum (n, ε)-separated set:

s(n, ε) = max{card E : E is (n, ε)−separated}.
The topological entropy of the map f is defined as

h(f ) = lim
ε→0

lim sup
n→∞

1

n
log s(n, ε).

Proposition 2.3. Let X be a compact metric space, and f : X → X a continuous map. If
there exists an invariant set � ⊂ X such that f |� is semi-conjugate to the m-shift σ, then

h(f ) � h(σ) = log m,

where h(f ) denotes the entropy of the map f. In addition, for every positive integer k,

h(f k) = kh(f ).

The details of topological entropy can be found in many books on dynamical systems (for
example, [16]).

3. Topological horseshoe theorems

To develop the main theory in this section, we first give some notions and notations.
Let R2 be the 2D Euclidean space. Let D be a compact set of R2, and Di, i = 1, 2, . . . , m,

be compact subsets (usually quadrangles) of D homeomorphic to the unit square or unit disc.
Let ∂Di be the boundary of Di. Let f : D → X be a piecewise continuous map which is
continuous on each compact set Di. We introduce some concepts and notations as follows.

For each Di, 1 � i � m, let d1
i and d2

i be two fixed disjointed arcs contained in the
boundary ∂Di. A connected subset l of Di is said to connect d1

i and d2
i , if l ∩ d1

i �= ∅ and

l ∩ d2
i �= ∅, and we denote this by d1

i

l←→ d2
i .

Definition 3.1. Let l ⊂ Di be a connected subset, we say that f (l) is crossing over Dj, if l

contains a connected subset l′ such that f (l′) ⊂ Dj, f (l′)∩D1
j �= ∅ and f (l′)∩D2

j �= ∅, i.e.,

d1
j

f (l′)←→ d2
j . In this case, we denote it by f (l) �→ Dj . In case that f (l) �→ Dj holds true for

every connected subset l ⊂ Di satisfying d1
i

l←→ d2
i , we say that f (Di) is crossing over Dj,
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and denote it by f (Di) �→ Dj in terms of two pairs
(
d1

i , d2
i

)
and

(
d1

j , d2
j

)
. In the following,

we only say f (Di) �→ Dj for convenience, and speak of the two pairs
(
d1

i , d2
i

)
and

(
d1

j , d2
j

)

in case of confusion arising.

Example 3.1. Let

• D1 = {(x, y) ∈ R2 : 0 � x � 1,−1 � y � 1}, with
• d1

1 = {(x, y) ∈ R2 : x = 0,−1 � y � 1} and d2
1 = {(x, y) ∈ R2 : x = 1,−1 � y � 1},

and
• D2 = {(x, y) ∈ R2 : 2 � x � 3, y = 0} with
• d1

2 = {(x, y) ∈ R2 : x = 2, y = 0} and d2
2 = {(x, y) ∈ R2 : x = 3, y = 0}.

Consider a map f with

f |D1
: f (x, y) = (4x, 0)T

f |D2
: f (x, y) = (4(x − 2), 0)T.

It is easy to see that f (Di) �→ Dj, 1 � i, j � 2. Note that D1 is a rectangle and D2 is
just a section of line.

Le X be a metric space, D is a compact subset of X. In the following, we consider compact
subsets D1, . . . , Dm−1. and Dm contained in D, and assume f : D → X is a piecewise
continuous map defined as above. To present a more general result on horseshoes for piecewise
continuous maps, let us first recall an established fact.

Definition 3.2. Let γ be a compact connected subset of D, such that for each 1 � i � m,

γi = γ ∩ Di is non-empty and compact, then γ is called a connection with respect to
D1, . . . , Dm−1 and Dm.

Let F be a family of connections γ s with respect to D1, . . . , Dm−1, and Dm satisfying the
following property:

γ ∈ F ⇒ f (γi) ∈ F.

Then F is said to be a f -connected family with respect to D1, . . . , Dm−1, and Dm.

Lemma 3.1 (Horseshoe lemma). Suppose that there exists a f -connected family F with
respect to D1, . . . , Dm−1 and Dm. Then there exists a compact invariant set K ⊂ D, such that
f |K is semi-conjugate to m-shift dynamics.

For a proof of this lemma, see [12]. Now we have the following result

Theorem 3.1. Suppose that the map f : D → R2 satisfies the following assumptions:

(1) There exist m mutually disjoint subsets D1, . . . , and Dm of D, the restriction of f to each
Di, i.e., f |Di is continuous.

(2) The relation f (Di) �→ Dj, holds for 1 � i, j � m.

Then there exists a compact invariant set K ⊂ D, such that f |K is semi-conjugate to
m-shift map, and

h(f ) � log m.

Proof. It is enough to show that there exists a f -connected family with respect to
D1, . . . , Dm−1 and Dm in view of lemma 3.1. To this end, let F be the family of arcs
crossing over every D1, . . . , Dm−1 and Dm : l ∈ F if and only if l ⊂ D and there exists

a subset li ⊂ l such that d1
i

li←→ d2
i . It is clearly non-empty. Now we show that F is a
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f -connected family with respect to D1, . . . , Dm−1 and Dm. For l ∈ F, l ∩ Di ⊃ li , which
implies that

f (l ∩ Di) ⊃ f (li).

Since f (li) is crossing over D1, . . . , Dm−1 and Dm by condition (2), so is f (l ∩ Di),

therefore

f (l ∩ Di) ∈ F,

showing that F is a f -connected family with respect to D1, . . . , Dm−1 and Dm. �

4. Stability of crossing

It is well known that the existence of horseshoes in a dynamical system is often demonstrated
through computer computations and simulations, and this is usually the case for the Poincaré
map derived from ordinary differential equations. In doing so, one has unavoidable round-off
and some computation errors, thus obtaining an approximate map for the nominal Poincaré
map. Therefore, it is more practical to provide a method for existence of horseshoes in a
map by means of its approximate map, thus offering a criterion to ensure validity and rigour
of computer-simulation arguments for horseshoes in dynamical systems. In this regard, it is
necessary to study stability of crossing, i.e., whether the ‘crossing over’ can be preserved under
(small) perturbations of map, which is equivalent to a robustness of the crossing property or
stability of crossing in the following sense.

Definition 4.1. Let A and B be two compact subsets of D, and a continuous map f : D → R2

with the property f (A) �→ B. If there exists an δ > 0 such that every continuous map
g(A) → R2 with ‖g − f ‖ = min

x∈A
‖g(x) − f (x)‖ < δ satisfies g(A) �→ B, then the crossing

of f (A) over B is said to be stable.

Now we see under what conditions the crossing can be stable. For a compact domain D

homeomorphic to the unit square with two fixed arcs d1 and d2, consider a subset B ⊂ R2

with the following properties:

(a) B = B1 ∪ B2 ∪ B3 with D ∩ B = B3 homeomorphic to unit square.
(b) There exist two subarcs α ⊂ int(d1) and β ⊂ int(d2) such that α, β ⊂ B3, and

B3 ∩ B1 = α and B3 ∩ B2 = β, where int(d) denotes the interior of the arc d, i.e.,
the arc d with its end points taken off.

(c) B1 − α ⊂ R2 − D, B2 − β ⊂ R2 − D.

(d) ∂B3 − α ∪ β ⊂ int D.

A subset B with these properties is called a companion set of D with respect to the fixed
arcs d1 and d2, or just a companion set of D for brevity.

The following fact is obvious.

Proposition 4.1. Consider a compact domain D homeomorphic to unit square with two fixed
arcs d1 and d2. And B = B1 ∪ B2 ∪ B3 be its companion set. Suppose a compact domain
C with fixed arcs c1 and c2 satisfies C �→ B, then there exists an ε > 0 such that for any
continuous map g : C → R2 that satisfies

‖g(x) − x‖ < ε, ∀ x ∈ C,

one has

g(C) �→ D.
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D

α
β

B1

b1

d1 d2

b2

B2

B

Figure 1. The compact set D and its companion set B.

Proof. This theorem is just a consequence of the following result.

Proposition 4.2. Consider a compact domain D homeomorphic to unit square with a fixed
pair (d1, d2). Let B = B1 ∪ B2 ∪ B3 be its accompanied set (see figure 1) satisfying

dist(∂D − d1 ∪ d2, B1 ∪ B2) � η, (4.1)

where dist(A,B) = min
x∈A,y∈B

‖x − y‖, and the fixed pair b1 ⊂ ∂B1 − α and b2 ⊂ ∂B2 − β of

B satisfies

dist(b1, d1) � η, dist(b2, d2) � η, (4.2)

dist(∂D − d1 ∪ d2, B3) � η, (4.3)

dist(d1, d2) � 2η, (4.4)

dist(B1, B2) � 2η. (4.5)

Suppose that a compact domain C with fixed pair (c1, c2) satisfies C �→ B, then for any
continuous map g : C → R2 that satisfies

‖g(x) − x‖ < η, ∀ x ∈ C, (4.6)

one has

g(C) �→ D.

Proof. It is enough to show that for every connected arc l ⊂ C connecting the fixed pair
(c1, c2), the crossing g(l) �→ D holds. Now for any such a connected arc, one has l �→ B by
assumption. This implies that there exist two points x̄, x̃ ∈ l such that x̄ ∈ b1 and x̃ ∈ b2.

Since |g(x̄) − x̄| < η, |g(x̃) − x̃| < η, one has g(x̄) /∈ D and g(x̃) /∈ D by conditions (4.1)
and (4.2). From conditions (4.2)–(4.4), it is easy to see that g(l) ∩ (D − ∂D) �= ∅ due to the
continuity of g. To see this, consider the subline of l̄ = l ∩B3. In view of condition (4.4), there
exists a point p ∈ l̄, such that dist(p, d2) � η, and dist(p, d1) � η. From condition (4.2), it
is easy to see that dist(p, ∂D) � η. It follows that g(p) ∈ (D − ∂D), and this is what we
want.
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Now because of the continuity of g, there is a point x1 ∈ l[x̄, p], and a point x2 ∈ l[p, x̃]
such that g(x1) ∈ ∂D and g(x2) ∈ ∂D. Here, l[a, b] designates the closed subline of l with
end points a and b. It is apparent that g(x1) ∈ d1 ∪ d2 and g(x2) ∈ d1 ∪ d2. This can be
proved as follows. Take the first assertion g(x1) ∈ d1 ∪ d2 as an example. Suppose that this
is not the case, then one would have g(x1) ∈ ∂D − d1 ∪ d2. However, conditions (4.1)–(4.3)
mean that ‖g(x1) − x1‖ � η, in contradiction to condition (4.4). Furthermore, in view of
condition (4.5), it can be seen that there is at least a point x̄1 ∈ l[x̄, p], and a point x̄2 ∈ l[p, x̃]
such that g(x̄1) ∈ d1 and g(x̄2) ∈ d2. If this is not the case, then without loss of generality,
suppose that every point z satisfying g(z) ∈ d1 ∪ d2 is contained in d2. This implies that that
there exists a point q ∈ l[x̄, p] with g(q) ∈ d2 such that g(x) /∈ D for ∀x ∈ l[x̄, q), where
l[x̄, q) designates the semi-closed subline of l with end points q and x̄ but not containing the
end point q. Note that |g(x̄) − x̄| < η implies the inequality dist(g(x̄), B1) < η. It follows
from inequality (4.5) that there exists a point s ∈ l(x̄, q) such that dist(g(s), B1) > η and
dist(g(s), B2) > η. Since g(s) /∈ D, then we have dist(g(s), B) > η. On the other hand, it is
easy to see that s ∈ B, which implies that dist(g(s), s) > η and this is in contradiction to the
condition (4.6). Therefore, there is at least a point x̄1 ∈ l[x̄, p], and a point x̄2 ∈ l[p, x̃] with
g(x̄1) ∈ d1 and g(x̄2) ∈ d2 such that g(l[x̄1, x̄2]) connects d1 and d2, i.e.,

d1 g(l[x̄1,x̄2])←→ d2.

We see that the crossing g(l) �→ D holds, therefore g(C) �→ D. ��

In the same way, the following important fact can be proved.

Proposition 4.3. Consider a compact domain D homeomorphic to the unit square with a fixed
pair (d1, d2). Let B = B1 ∪ B2 ∪ B3 be its accompanied set satisfying

dist(∂D − d1 ∪ d2, B1 ∪ B2) � η, (4.7)

where dist(A,B) = min
x∈A,y∈B

‖x − y‖, and the fixed pair b1 ⊂ ∂B1 − α and b2 ⊂ ∂B2 − β of

B satisfies

dist(b1, d1) � η, dist(b2, d2) � η, (4.8)

dist(∂D − d1 ∪ d2, B3) � η, (4.9)

dist(d1, d2) � 2η, (4.10)

dist(B1, B2) � 2η. (4.11)

Let C be a compact domain with fixed pair (c1, c2). Suppose that a continuous map
f : C → B satisfies f (C) �→ B, then for any continuous map g : C → R2 that satisfies

‖g(x) − f (x)‖ < η, ∀ x ∈ C, (4.12)

one has

g(C) �→ D.

Now in view of the above arguments, it is easy to obtain the following main results in this
paper.

Theorem 4.1. Let D be a compact set of R2, and Di, i = 1, 2, . . . , m, be compact subsets
(usually quadrangles) of D, and f : D → R2 be a continuous map. If there exists a companion
set Bi for each Di, such that f (Di) �→ Bj holds for i, j = 1, 2, . . . , m, then the crossing
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Figure 2. The decagon and its image under three iterations of the Ikeda map.

f (Di) �→ Dj is stable. Therefore there exists a δ > 0 such that for every g : D → R2

satisfying ‖g − f ‖ = min
x∈A

‖g(x) − f (x)‖ < δ, there exists a compact invariant set K ⊂ D,

such that f |K is semi-conjugate to the m-shift map.

Theorem 4.2. Let D be a compact set of R2, and Di, i = 1, 2, . . . , m, be compact subsets
(usually quadrangles) of D, and f : D → R2 be a continuous map. If there exists a companion
set Bi for each Di, such that f (Di) �→ Bj holds for i, j = 1, 2, . . . , m, supposing that
every companion set satisfies conditions (4.7)–(4.11) as in proposition 4.3, then the crossing
f (Di) �→ Dj is stable, and for the number η > 0 such that for every g : D → R2 satisfying
‖g − f ‖ = min

x∈D
‖g(x) − f (x)‖ < η, there exists a compact invariant set K ⊂ D, such that

g|K is semi-conjugate to the m-shift map.

5. Applications to a 2D map

As an application of the main result in this paper, we consider the well-known Ikeda map [1],
which is of the following form:

x(i + 1) = p + β(x(i) cos(t (i)) − y(i) sin(t (i)))

y(i + 1) = β(x(i) sin(t (i)) + y(i) cos(t (i)))

where

t (i) = t (x(i), y(i)) = κ − α/(1 + (x(i))2 + (y(i))2),

p = 1, β = 0.9, κ = 0.4, α = 6.

By means of careful computation, we find a decagon with its vertices: (0.3327, 0.6382),
(0.1484, 0.4956), (−0.0507, 0.2237), (−0.1502, −0.0782), (−0.1834, −0.4726), (0.4175,
−0.4583), (0.3991, −0.2325), (0.5244, 0.1096), (0.6756, 0.2500), (0.8452, 0.3026).

Figure 2 is the image of the decagon and its image under the third iteration of the
Ikeda map.
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Figure 3. The decagon and its companion set.

For convenience, we denoted the decagon with, in terms of its vertices, say,

D = abcdefghij,

and construct its companion set (decagon) B = a′b′c′d ′e′f ′g′h′i ′j ′ as follows as shown in
figure 3.

The companion decagon has the vertices: (0.4116, 0.6498), (0.1718, 0.4828), (−0.0358,
0.2138), (−0.1365, −0.0923), (−0.1687, −0.5314), (0.4156, −0.5422), (0.3753, −0.2314),
(0.5144, 0.1489), (0.6756, 0.2788) and (0.8489, 0.3251).

Now construct two disjoint hexagons; the upper one is denoted as D1, with its six vertices
being: (0.3327, 0.6382), (0.1484, 0.4956), (−0.0507, 0.2237), (0.5244, 0.1096), (0.6756,
0.2500) and (0.8452, 0.3026). The lower one is denoted as D2, with its six vertices being:
(−0.061 1475, 0.192 0005), (−0.1502, −0.0782), (−0.1834, −0.4726), (0.4175, −0.4583),
(0.3991, −0.2325) and (0.512 4965, 0.077 1005).

It is apparent in this example that the decagon B = a′b′c′d ′e′f ′g′h′i ′j ′ can play the role
of the companion set of both the upper hexagon and the lower one. Computer computation
shows that the distance between the edge abcde and edge a′b′c′d ′e′ (as shown in figure 3)
is larger than 0.0086, the distance between the edge fghij and edge f ′g′h′i ′j ′ is larger than
0.0086, the distance between the edge ef and edge e′f ′ is larger than 0.0086, the distance
between the edge ja and edge j ′a′ is also larger than 0.0086.

Now, the computer computation shows the images of the upper hexagon and the lower
one under the third iteration of the Ikeda map in figures 4 and 5.

A rounding float error arises when we iterate the initial point in the original decagon’s
edges for the first time, so the first iteration of the initial point has an error of e � 10−15 for
the second iteration; the error may be lessened or enlarged when iteration goes on. In order to
estimate errors more precisely, we can estimate the largest Lipschitz coefficient in the region
[−10, 10] × [−10, 10] which is mapped into itself under the Ikeda map as shown in [1], and
we find that the largest Lipschitz coefficient is not greater than 2.9725, so the third iteration
errors for every point on the edges of the hexagons D1 and D2 are not more than 9 × 10−15.

From theorem 4.2 one can easily conclude that the third iteration of D1 and D2 under the
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Figure 4. The image of upper hexagon.

Figure 5. The image of lower hexagon.

Ikeda map has crossing property with respect to D1 and D2, thus a horseshoe exists in D for
the Ikeda map.

6. Conclusion

In this paper, we have presented a theory on the existence and robustness of horseshoes under
perturbations in terms of stability of crossing. The framework is developed in the setting of
planar case, but it is easy to see that the main results of this paper can be generalized in the
context of n-dimensional space Rn or more general metric space. However, as in [2, 3], the
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theory developed in this paper is only efficient for dynamics with one-dimensional unstable
direction, and we will discuss this problem in a future paper.
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